GIAI
Goi A la gia cua vecto a. Ve dudng
thing d di qua Avad II A (nlu diim
A thudc A thi rf triing vdi A). Khi dd
cd hai diim M^ va M2 thudc dudng
thing d sao cho AMy = AM^ = \a\
(h. 1.5). Tacd:
a) AM.^ = a ;
b) AMj va AM2 ciing phuong vdi a
va cd dd dai bang dd dai cua a.
Hint) 1.5
Vi du 5. Cho tam giac ABC c6 H la trUc tam va O la tam dUdng trdn ngoai
tiep. Goi B'' la diem doi xtfng cOa S qua O. Chufng minh Al-I = B''C.
GIAI
Vi BB'' la dudng kinh cua dudng trdn ngoai tilp tam giac ABC nen
BAB'' =''BCB''= 90°. Do dd CHII BA va AH II B''C. Suy ra tii giac AB''CH la
hinh binh hanh. Wiy ~AH = Wc (h.1.6).
A
Hinh 1.6
C.
CAU HOI VA BAI TAP
1.1. Hay tinh sd cac vecto (khac 0) ma cac diim dSu va diim cudi duoc la''y tiir
cac diim phan biet da cho trong cac trudng hop sau :
a) Hai diim;
b) Ba diim;
c) Bdn diim.
1.2. Cho hinh vudng ABCD tam O. Liet ke ta''t ca cac vecto bang nhau (khac 0)
nhan dinh hoac tam ciia hinh vudng lam diim d& va diim cud''i.
1.3. Cho tii giac ABCD. Goi M, N, P va Q Ian lugt la trung diim ciia cac canh
AB,BC, CD vaDA. ChiJng minh WP = ''MQ
vaTQ^mi.
1.4. Cho tam giac ABC. Cac diim M va N Idn luot la trung diim cac canh AB va
AC. So sanh dd dai ciia hai vecto NM va BC. Vi sao cd thi ndi hai vecto
nay cung phuong ?
1.5. Cho tii giac ABCD, chiing minh ring nlu A5 = DC thi AD = BC .
1.6. Xac dinh vi tri tuong ddi ciia ba diim phan biet A, 5 va C trong cac trudng
hgp sau:
a) AB va AC cimg hudng, |AB| > |AC| ;
b) AB va AC ngugc hudng ;
c) AB va AC cimg phuong.
1.7. Cho hinh binh hanh ABCD. Dung AM = BA, MN = DA, NP = DC,
P g = BC . Chiing minh AG = 0.
10
§2. TONG VA HIEU CUA HAI VECTO
A.
CAC KIEN THQC CAN NHO
/ . Dinh nghia tong cua hai vecta vd quy tac tim tdng
• Cho hai vecto tuy y a va b. La''y diim A tuy y, dung AB = a, BC -b.
Khidd 2 + b = AC (h.1.7).
• Vdi ba diim M, N vaP tuy y ta ludn cd :
MN + NP = MP. (quy tic ba diim)
• Tu- giac ABCD la hinh binh hanh, ta cd (h.1.8):
''AB + AD = AC (quy tic hinh binh hanh).
Hint! 1.7
Hinh 1.8
2. Dinh nghia vecta ddi
• Vecto b la vecta ddi ciia vecto a nlu \b\ = \a\ va a, b la hai vecto ngugc
hudng. Kl hieu b = -a.
• Ne''u a la vecto dd''i cira b thi b la vecto ddi cua a hay -(-a) = a.
• Mdi vecto dIu cd vecto dd''i. Vecto dd''i ciia AB la BA. Vecto ddi ciia 0 la 0 .
3. Dinh nghia hieu cua hai vecta vd quy tac tim hieu
• a~b = a + {-b) ;
• Ta cd : OB-OA = AB vdi ba diim O, A, B bat ki (quy tic trii).
11
4. Tinh chat cua phep cong cdc vecta
Vdi ba vecto a,b,c ba''t ki ta cd
• a + b = b + a (tfnh cha''t giao hoan);
• (a + l}) + c = a + (b + c) (tinh chSit ket hgp);
• a + 0 = 0 + a = a (tinh chat ciia vecto - khdng);
• a + (-a) = - a + a = 0.
B.
DANG TOAN C O BAN
VAN
dE 1
Tim tong cua hai vecto va tong cua nhieu vecto
1. Phuang phdp
Dung dinh nghia tdng cua hai vecto, quy tic ba diim, quy tac hinh binh
hanh va cac tinh chit cua tong cac vecto.
2. Cdc vi du
Vi du 1. Cho hinh binh hanh ABCD. Hai diem MvaN Ian lugt la trung diem
cCia BC va AD.
a) Tim tong cua hai vecto NC va MC ; M f va CD ; /ID va A/C.
b) Chumg minh ''AM + ^^7ABCDE tam O.
a) Chifng minh rang hai vecto OA + OB va OC + OE deu cung phUdng
vdi OD.
b) ChCrng minh hai vecto AB va EC cung phi/ong.
GIAI
(Xemh.l.U)
M
Hinh 1.11
a) Ggi d la dudng thing chura OD thi J la mdt true dd''i xiing cua ngii giac
deu. Ta cd OA + OB = 0M, trong dd M la dinh ciia hinh thoi OAMB va
thudc d. Cung nhu vay, OC + OE = ON, trong dd N thudc d. Vay OA + OB
va OC + OE deu ciing phuong vdi OD vi ciing cd chung gia d.
b) AB va EC cimg vudng gdc vdi d nen AB // EC, suy ra AB cung phuong EC.
14
VAN
dg 2
Tim vecto doi va hieu cua hai vecto
1. Phuang phdp
• Theo dinh nghia, dl tim hieu a-b, ta lam hai budc sau :
- Tim vecto dd''i cua b ;
—»
—•
- Tinh tong a + (-b).
• van dung quy tic OA-OB = BA vdi ba diim 0,A,B bat ki.
2. Cdc vi du
Vi du 1. Chufng minh -(a + b) = -a + (-b).
GIAI
Gia sit a = AB,fe= BC thi a + b^ AC. Taco -a = ^,-b
= CB.
Dodd -a + (-b) = ^ + CB--CA = -''AC = -(a + b).
Vi du 2.
a) Chufng minh rang neu a la vecto dd''i ciia b thi a + b = 0.
b) ChCfng minh rang diem / la trung diem cua doan thang AB khi va chi khi
TA = -1B.
GIAI
a) Gia sir 6 = AB thi a = ''BA. Dodd a + b = ''BA + AB = ''BB = d.
b) Nlu / la trung diim cua doan thing AB thi /A = /B va hai vecto lA, IB
ngugc hudng. Vay lA = -IB.
Ngugc lai, nlu /A = -IB thi lA = IB va hai vecto /A, IB ngugc hudng. Do
dd A, /, B thing hang. Vay / la trung diim ciia doan thing AB.
Vi du 3. Cho tam giac ABC. Cac diem M, Nva P Ian lugt la trung diem cua
AB, AC va BC.
a) Tim hieu ^ - A A / ,
TM4-J4C,JAN-''PN,''BP-^.
b) Phan tich AM theo hai vecto MA/ va MP.
15
GIAI
(Xem h. 1.12)
a) AM-JN
= T^ ;
MN-NC = MN-MP = PN
(vi
''NC-^''MP);
MN-PN
= MN + NP = MP
(vi -¥N = TIP);
''BP-''CP = ~BP+ ''PC = ~BC (vi -''CP = ~PC).
b) AM = NP = MP-MN.
VAN de 7
^
Tinh do dai cua a + b,
a-b
1. Phuang phdp
Dau tien tinh a + b = AB, a-b = CD. Sau dd tinh dd dai cac doan thing AB
va CD bang each gin nd vao cac da giac ma ta cd thi tinh dugc dd dai cac
canh ciia nd hoac bing cac phuong phap tinh true tiep khac.
2. Cdc vi du
Vidu 1. Cho hinh thoi ABCD cd SAD = 60° va canh la a. Goi O la giao
diem hai dudng cheo. Tinh I AS + AD| , IsA - ec|, |o8 - Dc|.
GIAI
Vi tii giac ABCD la hinh thoi canh
a va BAD = 60° nen AC = a>j2>,
BD = a (h.l.13).
Tacd:
~^+ 7^ = 7^ nen
|AB + AD| = AC = aV3 ;
16